Events
Date 08 Dec 2025
Time 5:00 pm - 6:00 pm (HKT)
Venue Lecture Theatre P3, Chong Yuet Ming Physics Building
Speaker Prof. Wei XIONG
Institution University of California at San Diego
Self Photos / Files - Prof. Wei Xiong Seminar Poster
 
Title:
Toward a Rational Understanding of Polariton Chemistry
 
Schedule:
Date: 8thDecember, 2025 (Monday)
Time: 5 - 6 pm (HKT)
 
Venue: Lecture Room P3, Chong Yuet Ming Physics Building
 
Speaker:
Prof. Wei XIONG
University of California San Diego
 

References:

Professor Wei Xiong is a Full Professor and Kent Wilson Faculty Scholar in the Department of Chemistry and Biochemistry at the University of California, San Diego. Wei received his B.S. degree from Peking University, China, in 2006. He then joined Prof. Martin Zanni’s group at the University of Wisconsin, Madison, and completed his Ph.D. degree in 2011. At Madison, Wei focused on developing novel 2D vibrational spectroscopy (transient 2D IR and heterodyne 2D SFG spectroscopy) to study molecules on solid-state material surfaces. Wei then moved to the University of Colorado, Boulder, in 2011, where he worked with Prof. Margaret Murnane and Henry Kapteyn to develop the table-top XUV source for ultrafast measurements and time-resolved photoelectron spectroscopy for nanoparticles. He joined the faculty at the University of California San Diego in 2014. At UCSD, Wei’s research focuses on using and developing ultrafast nonlinear spectroscopic and imaging tools to reveal molecular structures and dynamics of materials, including ultrafast dynamics of polaritonic systems, biological self-assembly, femtosecond charge transfer dynamics on organic material interfaces. Wei is a fellow of the American Association of the Advancement of Science, a recipient of Sloan Research Fellow, Coblentz Award, National Brown Investigator Award, and Journal of Physical Chemistry C Lectureship, TRVS Young Investigator Award, and a finalist of the Blavatnik National Awards for Young Scientists.

 

Abstract:

Mid-Infrared (MIR) light can interact with molecules by selectively exciting molecular vibrational modes. In combination with photonic structures, MIR can target specific vibrational states of molecular to influence chemical reactions. In this talk, I will explain how photonic environments can modify molecular dynamics through strong light-matter coupling. This strong coupling leads to the molecular vibrational polaritons – a hybrid quasiparticle between light and matter. Using two-dimensional infrared (2D IR) spectroscopy, we have demonstrated that strong coupling to photonic environments can efficiently promote energy transfer within or between molecules, subsequently slowing down competing reaction pathways. We further explored the criteria to fulfill polariton-enabled energy transfer, by which we discovered and verified a new principle to enable intermolecular energy transfer through polaritons in disorder materials. Lastly, we employed a polariton propagation experiment to determine the number of active polariton states versus the inactive dark states. This research progress provide insights into a rational mechanism and designing photonic structures to modify chemical landscapes and influence reaction pathways.

 
- - ALL ARE WELCOME - -